

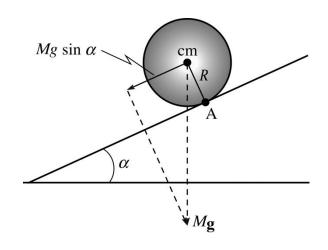
Cours 24 - 11/12/2024

10. La dynamique du solide indéformable

- 10.5. Théorème de Steiner
- 10.6. Théorème du moment cinétique pour un solide
- 10.7. Tenseur d'inertie

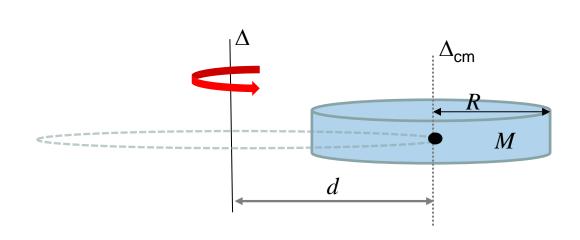
11. Applications du solide indéformable

- 11.1. Conditions d'équilibre
- 11.2. Mise en rotation d'un solide



10.5. Théorème de Steiner

■ Moment d'inertie pour une rotation d'un objet autour d'un axe ne passant pas par le centre de masse



Moment d'inertie pour une rotation autour de Δ_{cm} :

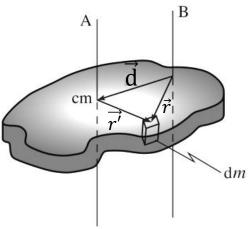
$$I_{\Delta,cm} = \frac{1}{2}MR^2$$

Attention: dans cet exemple, le disque tourne à la distance d autour de l'axe Δ . Le moment d'inertie I_{Δ} autour de l'axe Δ ne correspond pas au moment d'inertie $I_{\Delta,cm}$ pour une rotation autour d'un axe $\Delta_{\rm cm}$ passant par le centre de masse.

Moment d'inertie I_{Δ} pour une rotation autour de Δ ?

10.5. Théorème de Steiner

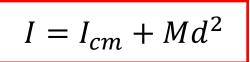
Le moment d'inertie I d'un solide de masse M pour une rotation autour d'un axe B, qui est parallèle et à la distance d de l'axe A passant par le cm, est donné par la relation suivante :



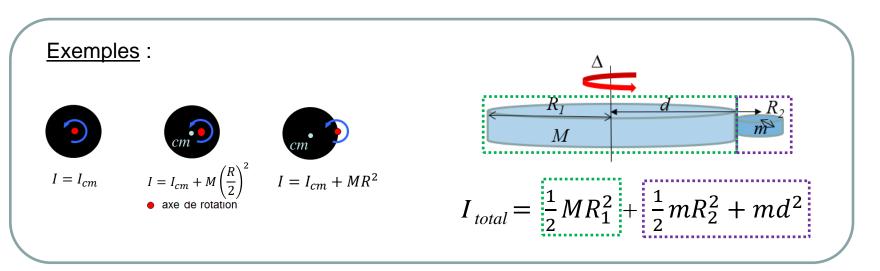
Théorème de Steiner (ou Théorème de Huygens-Steiner)

Huygens 1629 - 1695

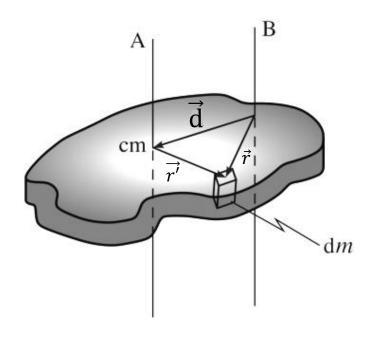
Steiner 1796 - 1863



avec I_{cm} moment d'inertie du solide pour une rotation autour de l'axe A passant par le centre de masse



10.5. Théorème de Steiner



Démonstration:

- On suppose que l'on connaît I_{cm} , le moment d'inertie pour une rotation autour de l'axe A passant par le cm et parallèle à l'axe B
- L'axe B est à la distance d de l'axe A

$$I_{B} = \int_{V} r^{2} dm = \int_{V} \vec{r}^{2} dm = \int_{V} (\vec{d} + \vec{r'})^{2} dm = d^{2} \int_{V} dm + 2\vec{d} \int_{V} \vec{r'} dm + \int_{V} \vec{r'}^{2} dm$$

10.6. Théorème du moment cinétique pour un solide

Généralisation pour un point quelconque

Soit le moment cinétique d'un solide calculé par rapport à A, qui est un point en translation :

$$\overrightarrow{L_A} = \int_V \overrightarrow{AP} \times \overrightarrow{v} dm = \int_V (\overrightarrow{AO} + \overrightarrow{OP}) \times \overrightarrow{v} dm \quad \underline{note} : on \ calcule \ \overrightarrow{L_A} \ sur \ l'ensemble \ des \ points \ P \ qui \ forment \ le \ solide \ de \ volume \ V \ (de \ masse \ M)$$

$$= \int_V \overrightarrow{AO} \times \overrightarrow{v} dm + \int_V \overrightarrow{OP} \times \overrightarrow{v} dm = \overrightarrow{AO} \times \int_V \overrightarrow{v} \ dm + \overrightarrow{L_O} \quad moment \ cinétique \\ calculé \ par \ rapport \ a \ O$$

$$\overrightarrow{L_A} = \overrightarrow{AO} \times \overrightarrow{p} + \overrightarrow{L_O} \quad volume \ V \ de \ mouvement \ du \ solide$$

$$\overrightarrow{dL_A} = \overrightarrow{AO} \times \overrightarrow{p} + \overrightarrow{AO} \times \overrightarrow{d} \ dt \quad dt$$

$$\overrightarrow{dL_A} = \overrightarrow{AO} \times \overrightarrow{p} + \overrightarrow{AO} \times \overrightarrow{d} \ dt \quad dt$$

$$\overrightarrow{dL_A} = \overrightarrow{AO} \times \overrightarrow{p} + \overrightarrow{AO} \times \overrightarrow{d} \ dt \quad dt$$

$$\overrightarrow{dL_A} = \overrightarrow{AO} \times \overrightarrow{p} + \overrightarrow{AO} \times \overrightarrow{d} \ dt \quad dt$$

$$\overrightarrow{dL_A} = \overrightarrow{AO} \times \overrightarrow{p} + \overrightarrow{AO} \times \overrightarrow{d} \ dt \quad dt$$

$$\overrightarrow{dL_A} = \overrightarrow{AO} \times \overrightarrow{p} + \overrightarrow{AO} \times \overrightarrow{d} \ dt \quad dt$$

$$\overrightarrow{dL_A} = \overrightarrow{AO} \times \overrightarrow{p} + \overrightarrow{AO} \times \overrightarrow{d} \ dt \quad dt$$

$$\overrightarrow{dL_A} = \overrightarrow{AO} \times \overrightarrow{p} + \overrightarrow{AO} \times \overrightarrow{d} \ dt \quad dt$$

$$\overrightarrow{dL_A} = \overrightarrow{AO} \times \overrightarrow{p} + \overrightarrow{AO} \times \overrightarrow{d} \ dt \quad dt$$

$$\overrightarrow{dL_A} = \overrightarrow{AO} \times \overrightarrow{p} + \overrightarrow{AO} \times \overrightarrow{d} \ dt \quad dt$$

$$\overrightarrow{dL_A} = \overrightarrow{AO} \times \overrightarrow{p} + \overrightarrow{AO} \times \overrightarrow{d} \ dt$$

$$\overrightarrow{dL_A} = \overrightarrow{AO} \times \overrightarrow{p} + \overrightarrow{AO} \times \overrightarrow{d} \ dt$$

$$\overrightarrow{dL_A} = \overrightarrow{AO} \times \overrightarrow{p} + \overrightarrow{AO} \times \overrightarrow{d} \ dt$$

$$\overrightarrow{dL_A} = \overrightarrow{AO} \times \overrightarrow{p} + \overrightarrow{AO} \times \overrightarrow{d} \ dt$$

$$\overrightarrow{dL_A} = \overrightarrow{AO} \times \overrightarrow{p} + \overrightarrow{AO} \times \overrightarrow{d} \ dt$$

$$\overrightarrow{dL_A} = \overrightarrow{AO} \times \overrightarrow{p} + \overrightarrow{AO} \times \overrightarrow{d} \ dt$$

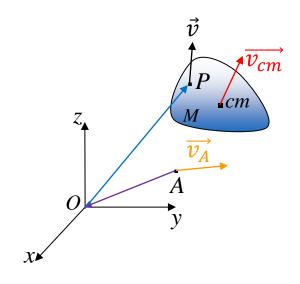
$$\overrightarrow{dL_A} = \overrightarrow{AO} \times \overrightarrow{p} + \overrightarrow{AO} \times \overrightarrow{d} \ dt$$

$$\overrightarrow{dL_A} = \overrightarrow{AO} \times \overrightarrow{p} + \overrightarrow{AO} \times \overrightarrow{d} \ dt$$

$$\overrightarrow{AO} \times \overrightarrow{p} + \overrightarrow{AO} \times \overrightarrow{p} + \overrightarrow{AO} \times \overrightarrow{d} \ dt$$

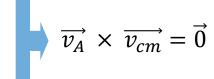
$$\overrightarrow{AO} \times \overrightarrow{p} + \overrightarrow{AO} \times \overrightarrow{p} + \overrightarrow{AO} \times \overrightarrow{d} \ dt$$

$$\overrightarrow{AO} \times \overrightarrow{p} + \overrightarrow{AO} \times \overrightarrow{p$$



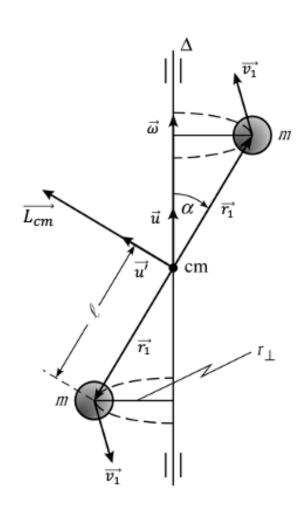
$$\frac{d\overrightarrow{L_A}}{dt} + M \overrightarrow{v_A} \times \overrightarrow{v_{cm}} = \overrightarrow{\mathcal{M}_A}$$

Si *A* fixe dans le référentiel Si A est le centre de masse Si $\overrightarrow{v_A}$ colinéaire à $\overrightarrow{v_{cm}}$



10.7. Tenseur d'inertie

Définition du «tenseur»



Dans le cas de l'haltère incliné \vec{L} n'est pas parallèle à $\vec{\omega}$.

Il faut alors trouver une relation entre \vec{L} et $\vec{\omega}$.

Ceci est possible avec un nouvel objet mathématique.

Cet objet mathématique est un <u>tenseur</u>, représenté par une matrice (3x3)

On note le tenseur d'inertie $\underline{\underline{I}}$

10.7. Tenseur d'inertie

Définition du «tenseur»

Nous cherchons une relation du type

$$\vec{L} = \underline{\underline{I}} \, \overrightarrow{\omega} \quad \text{où}$$

$$\begin{pmatrix} L_x \\ L_y \\ L_z \end{pmatrix} = \begin{pmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{pmatrix} \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix}$$
 Composantes du vecteur moment cinétique Tenseur d'inertie vitesse angulaire

$$\underline{\mathbf{I}} = \left(\begin{array}{ccc} \int \left(y^2 + z^2 \right) dm & - \int xydm & - \int xzdm \\ - \int yxdm & \int \left(x^2 + z^2 \right) dm & - \int yzdm \\ - \int zxdm & - \int zydm & \int \left(x^2 + y^2 \right) dm \end{array} \right)$$

Cette matrice est le tenseur d'inertie, noté <u>I</u>

10.7. Tenseur d'inertie

■ Moment d'inertie et Tenseur d'inertie

Pour un axe principal de rotation d'un solide, nous avons constaté que \vec{L} et $\vec{\omega}$ sont parallèles. Dans ce cas, ils sont reliés par un scalaire I, le moment d'inertie :

$$\vec{L} = I \vec{\omega}$$

Si le moment cinétique L n'est pas colinéaire à $\vec{\omega}$, alors on écrit

$$\vec{L} = \underline{\underline{I}}\vec{\omega}$$

avec $\underline{\underline{I}}$ le tenseur d'inertie du solide

Dynamique du solide - résumé

Dans un référentiel galiléen, et avec O un point fixe de ce référentiel, nous avons les relations suivantes pour un solide indéformable de masse M:

2nd loi de Newton appliquée au centre de masse :

$$M\frac{d\overrightarrow{v_{cm}}}{dt} = \sum \overrightarrow{F_{ext,i}} = \overrightarrow{F_{ext}}$$
 $\overrightarrow{F_{ext}}$ résultante des forces extérieures agissant sur le système

Théorème du moment cinétique :

$$\frac{d\overrightarrow{L_O}}{dt} = \sum \overrightarrow{\mathcal{M}_{O,ext,i}} = \overrightarrow{\mathcal{M}_{O,ext}} \qquad \overrightarrow{\mathcal{M}_{O,ext}} \text{ résultante des moments des forces extérieures}$$

Dans le cas d'une rotation autour d'un axe principal d'inertie : $\vec{L} = I\vec{\omega}$

Moment d'inertie par rapport à l'axe Δ passant par le cm : $I=\int_V r_\perp^2 dm$ Théorème de Steiner : $I=I_{cm}+Md^2$

Energie cinétique de rotation :
$$E_{cin}=rac{1}{2}I_{cm,\Delta}\omega^2$$
 pour une rotation autour d'un axe passant par le cm

11. Applications du solide indéformable

11.1. Conditions d'équilibre

11.2. Mise en rotation d'un solide

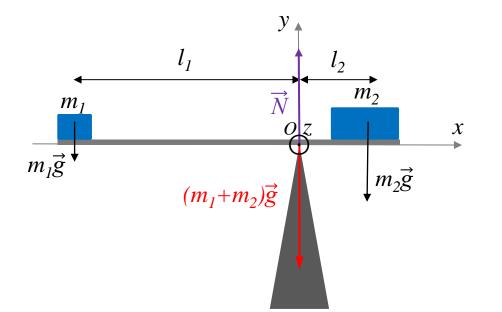
11.1. Conditions d'équilibre

Conditions d'équilibre pour un solide

$$M\frac{d\overrightarrow{v_{cm}}}{dt} = \sum \overrightarrow{F_{ext,i}} = \overrightarrow{0}$$
 et $\frac{d\overrightarrow{L_O}}{dt} = \sum \overrightarrow{\mathcal{M}_{O,ext,i}} = \overrightarrow{0}$

$$\frac{d\overrightarrow{L_O}}{dt} = \sum \overline{\mathcal{M}_{O,ext,i}} = \overrightarrow{0}$$

Exemple: équilibre d'une barre (sans masse) avec deux masses à chaque extrémité



$$\sum_{i} \overrightarrow{F_{ext,i}} = \overrightarrow{0} \quad \text{projection sur } \overrightarrow{e_y} : N - (m_1 + m_2)g = 0$$

$$\sum \overrightarrow{\mathcal{M}_{0,ext,i}} = \overrightarrow{0} \implies l_2 \overrightarrow{e_x} \times (-m_2 g \overrightarrow{e_y}) + (-l_1 \overrightarrow{e_x}) \times (-m_1 g \overrightarrow{e_y}) = \overrightarrow{0}$$
$$-l_2 m_2 g \overrightarrow{e_z} + l_1 m_1 g \overrightarrow{e_z} = \overrightarrow{0}$$

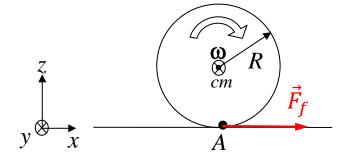
projection sur
$$\overrightarrow{e_z}$$
: $-l_2m_2\mathbf{g} + l_1m_1\mathbf{g} = 0$

finalement
$$l_2 = l_1 \frac{m_1}{m_2}$$

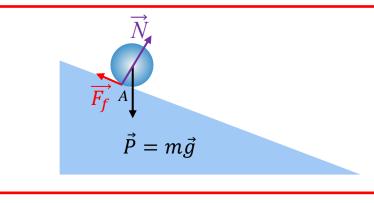
Roulement sans glissement - rappel

La force de frottement sec entre la roue et le sol est responsable du roulement sans glissement

 \Rightarrow La vitesse d'un point de la roue au moment du contact avec le sol (en A) est nulle



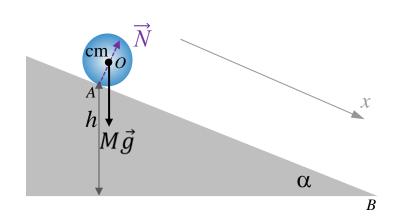
La condition de roulement sans glissement est $\overrightarrow{v_A} = \overrightarrow{\theta}$ ce qui conduit à $\overrightarrow{v_{cm}} = \omega R \overrightarrow{e_x}$



La force de frottement est responsable de la mise en rotation d'une roue sur un plan incliné. S'il n'y avait pas de frottement, elle glisserait sans tourner.

■ Rôle du frottement et mise en rotation d'une roue

S'il n'y a pas de force de frottement sec ⇒ la roue glisse sans mise en rotation



Démonstration :

$$\frac{d\overrightarrow{\mathbf{L}_{cm}}}{dt} = \sum_{i} \overrightarrow{r_{cm,i}} \times \overrightarrow{F_{ext,i}} = \overrightarrow{0} \times M\overrightarrow{g} + \overrightarrow{OA} \times \overrightarrow{N} = \overrightarrow{0}$$

La dérivée du moment cinétique est nulle : il n'y a pas de mise en rotation.

⇒ La mise en rotation nécessite un moment de force, et donc une force de frottement au point de contact.

Accélération de la bille : on applique la 2nd loi de Newton au centre de masse de la roue

$$M\frac{d\overrightarrow{v_{cm}}}{dt} = M\overrightarrow{a}_{glissement} = \sum \overrightarrow{F_{ext,i}} \longrightarrow a_{glissement} = g \sin \alpha$$

Vitesse de la bille en bas du plan incliné : on applique le principe de conservation de l'énergie mécanique

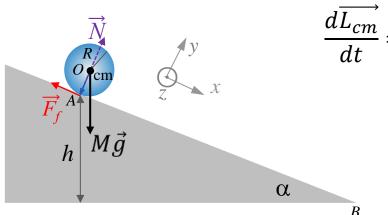
Etat initial en A: MghEtat final en $B: \frac{1}{2}Mv^2$ \Rightarrow

$$\Rightarrow v = \sqrt{2gh}$$

Aucune différence avec la mécanique du point matériel

Accélération d'une roue qui roule sans glisser sur un plan incliné

Force de frottement sec \Rightarrow à l'origine de la mise en rotation en s'opposant au glissement.



$$\frac{d\overrightarrow{L_{cm}}}{dt} = \sum \overrightarrow{\mathcal{M}_{cm,ext,i}} \longrightarrow \frac{d\overrightarrow{L_{cm}}}{dt} = \overrightarrow{0} \times M\overrightarrow{g} + \overrightarrow{OA} \times \overrightarrow{N} + \overrightarrow{OA} \times \overrightarrow{F_f} = -RF_f\overrightarrow{e_z}$$

- La mise en rotation $\left(|\frac{dL_{cm}}{dt}|>0\right)$ est due au moment de la force de frottement statique F_f qui s'exerce au point A.
- Le moment cinétique augmente selon $-\overrightarrow{e_z}$, ce qui correspond au roulement de la bille vers le bas.

Remarque : la vitesse est nulle au point de contact où s'exerce le frottement. Celle-ci ne travaille donc pas ($\delta W = F_f dl = F_f v_A dt = 0$). Il n'y a pas de dissipation d'énergie.

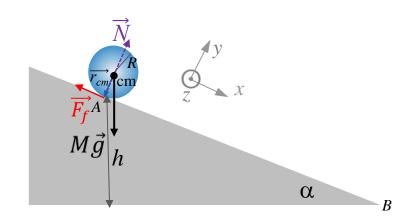
La vitesse de la roue en bas du plan incliné est déterminée par la conservation de l'énergie mécanique :

En A: Mgh
En B:
$$\frac{1}{2} M v^2 + \frac{1}{2} I_{cm} \omega^2 \implies v = \sqrt{\frac{2gh}{1 + \frac{I_{cm} \omega^2}{M}}} = \sqrt{\frac{2gh}{1 + \frac{I_{cm}}{MR^2}}}$$

La vitesse est plus faible que celle déterminée pour le cas sans frottement car une partie de l'énergie potentielle a été convertie en énergie cinétique de rotation.

avec ω la vitesse de rotation de la bille, et I_{cm} son moment d'inertie et $v = \omega R$

Accélération d'une roue qui roule sans glisser sur un plan incliné



La vitesse en *B* est plus faible dans le cas d'un roulement sans glissement, par rapport au cas sans frottement, donc l'accélération du centre de masse est aussi plus faible.

$$a_{roulement} < a_{glissement}$$

Calcul de l'accélération du centre de masse :

Pour calculer l'accélération du centre masse nous utilisons deux lois essentielles

• 2nd loi de Newton appliquée au cm :

$$M\overrightarrow{a_{cm}} = M\overrightarrow{g} + \overrightarrow{N} + \overrightarrow{F_f}$$

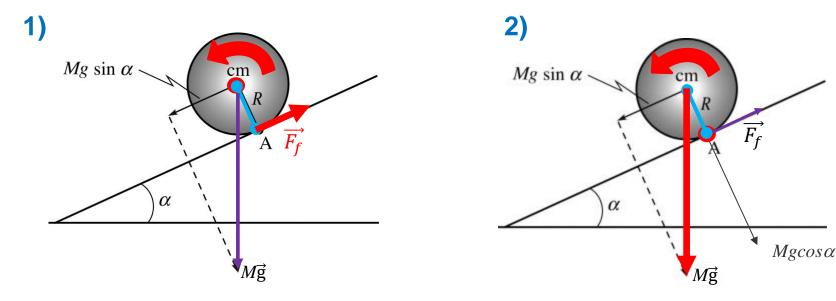
• Théorème du moment cinétique :

$$\frac{d\overrightarrow{\mathbf{L}_{cm}}}{dt} = \overrightarrow{\mathbf{r}_{cm}} \times \overrightarrow{F_f} = -RF_f\overrightarrow{e_z} \text{ avec } \overrightarrow{L_{cm}} = I_{cm} \overrightarrow{\omega}$$

Accélération d'une roue qui roule sans glisser sur un plan incliné

Remarque : la rotation d'un cylindre sur un plan incliné peut être traitée de deux façons différentes.

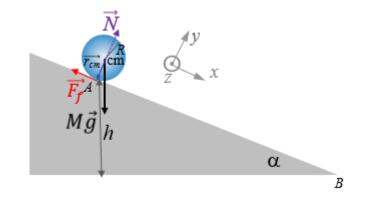
- 1) Rotation autour d'un axe passant par son centre de masse (calcul précédent)
- 2) Rotation autour d'un axe passant par le point de contact A (on applique dans ce cas le théorème de Steiner)



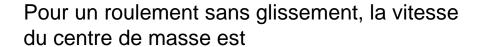
Rotation autour d'un axe passant par *A* : on applique Steiner pour calculer le moment d'inertie

: axe de rotation considéré

Accélération d'une roue qui roule sans glisser sur un plan incliné



Calcul de l'accélération du centre de masse :



$$\overrightarrow{v_{cm}} = \omega R \overrightarrow{e_x} \implies \overrightarrow{a_{cm}} = R \dot{\omega} \overrightarrow{e_x}$$

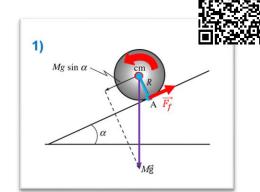
On projette sur $\overrightarrow{e_x}$: $a_{cm} = R\dot{\omega}$

$$\frac{d\overrightarrow{\mathbf{L}_{cm}}}{dt} = \overrightarrow{\mathbf{r}_{cm}} \times \overrightarrow{F_f} = -RF_f\overrightarrow{e_z} \quad \text{et} \quad \frac{d\overrightarrow{\mathbf{L}_{cm}}}{dt} = -I_{cm}\dot{\omega}\overrightarrow{e_z} \quad \text{car} \quad \overrightarrow{L_{cm}} = I_{cm} \ \overrightarrow{\omega} = -I_{cm}\omega \overrightarrow{e_z}$$

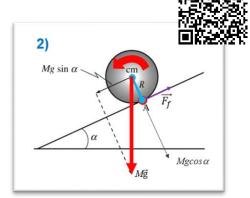
On projette sur
$$\overrightarrow{e_z}$$
: $\frac{dL_{cm}}{dt} = -RF_f = -I_{cm}\dot{\omega} \longrightarrow F_f = \frac{I_{cm}\dot{\omega}}{R} = \frac{I_{cm}a_{cm}}{R^2}$

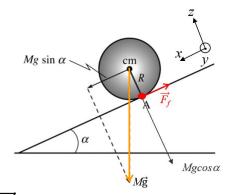
2nd loi de Newton projetée sur Ox: $Ma_{cm} = Mg \sin \alpha - F_f \longrightarrow Ma_{cm} = Mg \sin \alpha - \frac{I_{cm}a_{cm}}{R^2}$

Finalement
$$a_{cm} = \frac{g \sin \alpha}{\left(1 + \frac{I_{cm}}{MR^2}\right)}$$



Accélération d'une roue qui roule sans glisser sur un plan incliné





a) Calculez $\frac{d\overrightarrow{L_A}}{dt}$ en fonction de R, M, g, α

$$\frac{d\overrightarrow{L_A}}{dt} = \overrightarrow{M_A} = R\overrightarrow{e_z} \times M\overrightarrow{g} + \overrightarrow{0} \times \overrightarrow{F_f} = RMg \sin \alpha \overrightarrow{e_y}$$

b) Exprimez $\overrightarrow{L_A}$ en fonction de $\overrightarrow{\omega}$

$$\overrightarrow{L_A} = I_A \overrightarrow{\omega}$$

c) Exprimez $\dot{\omega}$ en fonction de R, M, g, α et I_A

En projetant sur
$$\overrightarrow{e_y}$$
: $\dot{\omega} = \frac{\dot{L}_A}{I_A} = \frac{RMg \sin \alpha}{I_A}$

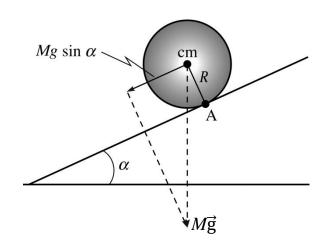
d) Exprimez I_A en fonction de M et R

$$I_A = I_{cm} + MR^2$$

e) Quelle est l'accélération a suivant le plan incliné ?

$$a = R\dot{\omega} \implies a = \frac{R^2 Mg \sin \alpha}{I_{cm} + MR^2} = \frac{g \sin \alpha}{1 + \frac{I_{cm}}{MR^2}}$$

Accélération d'une roue qui roule sans glisser sur un plan incliné



L'accélération est plus faible lorsque le cylindre (ou la sphère) roule au lieu de glisser (sans frottement).

⇒ Ceci est dû au moment d'inertie qui s'oppose à l'accélération angulaire.

$$a = \frac{g \sin \alpha}{1 + \frac{I_{cm}}{MR^2}}$$

Soient un cylindre plein, un cylindre creux, et une sphère pleine, avec le même rayon R et la même masse M. Ils sont lâchés sans vitesse sur un plan incliné. L'accélération dépend de leur moment d'inertie :

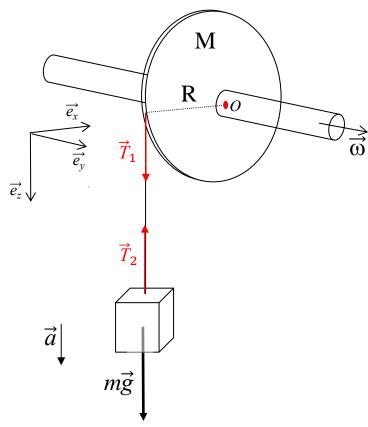
1. sphère
$$I_{cm} = \frac{2}{5}MR^2 \Longrightarrow a = \frac{5}{7}g\sin\alpha$$

2. cylindre
$$I_{cm} = \frac{1}{2}MR^2 \Longrightarrow a = \frac{2}{3}g\sin\alpha$$
 plein

3. cylindre
$$I_{cm} = MR^2 \implies a = \frac{1}{2}g\sin\alpha$$

Accélération d'une masse m avec poulie de moment d'inertie $I = \frac{1}{2} MR^2$

Le fil est enroulé autour de la poulie. La masse m descend sous l'effet du poids et la poulie de masse M se met à tourner.



3ème Loi de Newton sur la masse
$$m$$
: $T_1 = T_2 = T$

2^{nde} Loi de Newton :
$$m\vec{a} = mg \vec{e_z} - T\vec{e_z} \Rightarrow ma = mg - T$$

Moment cinétique appliqué sur la poulie en O :

$$\overrightarrow{L_O} = I \ \overrightarrow{\omega} = I\omega \overrightarrow{e_y}$$
 et $\frac{d\overrightarrow{L_O}}{dt} = \overrightarrow{M_{O,F_{ext}}} = -R\overrightarrow{e_x} \times T \overrightarrow{e_z} = RT \overrightarrow{e_y}$

$$\frac{d\overrightarrow{L_O}}{dt} = RT \overrightarrow{e_y} \implies \frac{dL_O}{dt} = RT = I \dot{\omega} \implies T = I \frac{\dot{\omega}}{R}$$

d'où
$$ma = mg - T = mg - I\frac{\dot{\omega}}{R} = mg - \frac{1}{2}MR^2\frac{\dot{\omega}}{R} = mg - \frac{1}{2}Ma$$

avec $I = \frac{1}{2}MR^2$ car $a = R\dot{\omega}$

$$a = \frac{mg}{m + \frac{1}{2}M}$$